Direct Electrolytic Reduction of Oxides

Karthick Gourishankar, Laszlo Redey and Mark Williamson Chemical Engineering Division, Argonne National Laboratory

Introduction

- . Goal: Extend pyroprocessing to include treatment of spent light water reactor fuel to reduce burden on repository
- Recover actinides for consumption as fuel in advanced fast reactor
- Produce durable, leach-resistant waste forms to encapsulate fission products
- Successful development of a process to reduce actinide-oxides to metals is a key step in achieving the goal
- Direct electrolytic reduction selected for conversion of spent actinide oxides to metals because of high product quality, high throughput, simple engineering, and compatibility with electrorefiner technology

Direct Electrolytic Reduction -Process Description

Electrochemical process converts metal oxides to metals, a solid-state transformation, using electrons

Direct Electrolytic Reduction Demonstrated with UO2 and UO2-5wt% PuO2 Feeds

UO. Reduction with Periodic **Current Interrupts - Stable Cell Performance Achieved**

UO₂ Reduction Mechanism by Coulometric Titration

Electrochemical reduction of UO, involves multi-step electron transfer

Formation of Intermediate Phases

- Electrochemical evidence of multiple stable rest potentials characterizing electrolytic reduction of UO₂
- ullet Formation of intermediate compounds such as ${\rm Li_2U_xO_y}$ may explain the observation of stable rest potentials in UO2 reduction
- For an oxide, M_xO_v, the postulated solid-state reduction mechanism is summarized by the reaction

$$\begin{array}{c} M_{x}O_{y}\left(s\right)+z\,e_{-}+z\,Li_{+}=Li_{z}M_{x}O_{y}\left(s\right)\\ Li_{z}M_{x}O_{y}\left(s\right)+(2y\text{-}z)\,e_{-}+(2y\text{-}z)\,Li_{+}=x\,M\left(s\right)+2y\,Li_{+}+y\,O^{2\text{-}} \end{array}$$

High-Capacity Reduction (HCR) Cell

HCR cells designed to provide electrochemical engineering data needed for pilot-scale cell design

Copper Cooling Coils in Off-Gas Train

Heat Shield

Stainless Steel

HCR cells handle kg-scale feeds and large

HCR Cathode Product

- . Complete conversion of 1kg UO, feed to
- Entrained salt in product ~12 wt% Stable and reproducible cell performance

Tracking Reduction in HCR Cells

Monitoring O2 in off-gas reveals reduction status and in-situ current efficiency

HCR Test Results

- Instantaneous Current Efficiency
- η = i₀₂/i where i₀₂ = instantaneous O₂ flux (current equivalent) i = instantaneous cell current

- 465 Ah passed
- 300 Ah theoretical required for 750 g UO₂
- Total Oxygen Removed from Cell
- ω = ∫ i₀₂ dt Extent of Reduction
- 99.5% by chemical analysis of product
- 97% by integrating instantaneous oxygen removed from cell

- · Direct electrolytic reduction demonstrated using
- UO₂-5wt% PuO₂
 Demonstrated >99% conversion of UO₂, PuO₂, and AmO₂
- · Reduction rates are very good
- . UO2 reduction mechanism involves multi-step electron transfer reactions
- HCR cells have incorporated enhanced O₂-handling and process monitoring features

